

Towards Networked Airborne Computing in Uncertain Airspace: A Control and Networking Facilitated Distributed Computing Framework

Poznan Workshop, October 2024

Lightweight Cryptography

Poznan University of Technology

PhD DSc. Eng. Paweł Śniatała, prof. PP PhD Eng. Anna Grocholewska-Czuryło MSc. Marek Fechner MSc. Eng. Konrad Śniatała Eng. Szymon Baliński

Poznan Workshop, October 2024

Agenda

- 1. Lightweight Cryptography
- 2. Criteria when choosing an algorithm
- 3. NIST LWC Competition
- 4. List of lightweight cryptographic algorithms
- 5. Future works

Lightweight Cryptography

- What is the difference between cryptography and lightweight cryptography?
- Role of the lightweight cryptography in IoT
- Lightweight cryptography in UVAs

https://www.adsgroup.org.uk/knowledge/countering-the-malicious-usage-of-drones/

Criteria when choosing an algorithm (I)

1. Security:

- Cryptographic Resistance
- Key and block length
- Analysis and verification

2. Performance:

- Capacity
- Delay

3. Resource Consumption:

- Memory
- Energy

4. Implementation complexity:

- Ease of implementation
- Potential Errors

5. Resistance to side-channel attacks:

- Physical attacks
- Protection measures

6. Licensing and Intellectual Property:

- Licensing
- Open Source

POLITECHNIKA POZNAŃSKA

Criteria when choosing an algorithm (II)

7. Compliance with standards:

- International standards
- Interoperability

8. Scalability and Flexibility:

- Adaptability
- Support for different platforms

9. Implementation experience:

- Case studies
- Community and support

https://www.nokia.com/sites/default/files/2022-01/cybersecurity4_0.jpg

NIST LWC Competition

- National Institute of Standards and Technology
- Genesis of the Contest
- Contest Goals
- Contest Phases

https://csrc.nist.gov/projects/lightweight-cryptography

	Ascon-128	Ascon-128a
State(Bits)	320	320
Key(Bits)	128	128
Rate/Block (Bits)	64	128
Security (Bits)	128	128

- Type: Sponge --
 - Mode of operation: Duplex
- Winner of the NIST competition -
- Uses only bitwise operations -
- Resistant to side-channel attacks

PHOTON-Beetle

	PHOTON-Beetle- AEAD[128]	PHOTON-Beetle- AEAD[32]
State(Bits)	256	256
Key(Bits)	128	128
Rate/Block (Bits)	128	32
Security (Bits)	121	128

- **Type**: Sponge

-

- Mode of operation: Beetle
- Finalist of the NIST competition
- Uses Beetle Sponge
- Resistant to multi-block manipulation attack

A Review of the NIST Lightweight Cryptography Finalists and Their Fault Analyses, Hasindu Madushan, DOI: 10.3390/electronics11244199

TinyJAMBU

	TinyJambu
State(Bits)	128
Key(Bits)	128
Rate/Block (Bits)	32
Security (Bits)	120

- Type: Sponge
- Mode of operation: TinyJambu
- Finalist of the NIST competition
- Uses Nonlinear-feedback shift register
- Resistant to abuses nonce
- Prepared to perform parallel

A Review of the NIST Lightweight Cryptography Finalists and Their Fault Analyses, Hasindu Madushan, DOI: 10.3390/electronics11244199

	ISAP-K-128	ISAP-A-128
State(Bits)	400	320
Key(Bits)	128	128
Rate/Block (Bits)	144	64
Security (Bits)	128	128

- **Type**: Sponge

-

- Mode of operation: ISAP
- Finalist of the NIST competition
- Different permutations in variants
- Re-keying function
 - Uniqueness of the nonce

	Grain-128AEAD
State(Bits)	256
Key(Bits)	128
Rate/Block (Bits)	1
Security (Bits)	128

- Type: Stream
- Mode of operation: N/A
- Finalist of the NIST competition
- Only stream cipher in final
- Two main components
- Fault attacks

A Review of the NIST Lightweight Cryptography Finalists and Their Fault Analyses, Hasindu Madushan, DOI: 10.3390/electronics11244199

Fault Analysis of GRAIN-128, Alexandre Berzati, DOI: 10.1109/HST.2009.5225030

	ACORN-128
State(Bits)	293
Key(Bits)	128
Rate/Block (Bits)	1
Security (Bits)	128

- Type: Stream
- Mode of operation: N/A
- Finalist of the CAESAR competition
- Prepared to perform parallel
- Linear-feedback shift register

Shi, Tairong, i Jie Guan. "Cryptanalysis of the Authentication in ACORN". KSII Transactions on Internet and Information Systems 13,

nr 8 (2019): 4060–4075. https://doi.org/10.3837/tiis.2019.08.013.

	PRESENT
State(Bits)	64
Key(Bits)	80 or 128
Rate/Block (Bits)	64
Security (Bits)	80 or 128

- Type: Block
- Mode of operation: N/A
 - PRESENT is included in the following standards:
 - ISO/IEC 29167-11:2014
 - ISO/IEC 29192-2:2019

· Ultra Low-Power Encryption/Decryption Core for Lightweight IoT Applications.", Zaky, Ahmed, https://doi.org/10.1109/ICENCO48310.2019.9027471 14

-

- Classification of algorithms according to the presented criteria
- Choice of encryption key management method
- Selecting algorithms and testing
- Implementing selected algorithm

References (I)

- Madushan, Hasindu, Iftekhar Salam, i Janaka Alawatugoda. "A Review of the NIST Lightweight Cryptography Finalists and Their Fault Analyses". Electronics 11, nr 24 (2022): 4199. https://doi.org/10.3390/electronics11244199.
- Dobraunig, Christoph, Maria Eichlseder, Florian Mendel, i Martin Schläffer. "Ascon v1.2: Lightweight Authenticated Encryption and Hashing". Journal of Cryptology 34, nr 3 (2021): 33. <u>https://doi.org/10.1007/s00145-021-09398-9</u>.
- Berzati, Alexandre, Cecile Canovas, Guilhem Castagnos, Blandine Debraize, Louis Goubin, Aline Gouget, Pascal Paillier, and Stephanie Salgado. "Fault Analysis of GRAIN-128." In 2009 IEEE International Workshop on Hardware-Oriented Security and Trust, 7+. San Francisco, CA, July 27, 2009. https://doi.org/10.1109/HST.2009.5225030.
- Zaky, Ahmed, Eslam Elmitwalli, Mostafa Hemeda, Yehea Ismail, and Khaled Salah. "Ultra Low-Power Encryption/Decryption Core for Lightweight IoT Applications." In 2019 15th International Computer Engineering Conference (ICENCO), 39–43. Cairo, Egypt, December 2019. https://doi.org/10.1109/ICENCO48310.2019.9027471.
- Shi, Tairong, i Jie Guan. "Cryptanalysis of the Authentication in ACORN". KSII Transactions on Internet and Information Systems 13, nr 8 (2019): 4060–4075.
 https://doi.org/10.3837/tiis.2019.08.013.

POLITECHNIKA POZNAŃSKA

Thank you very much.