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Introduction: Unmanned Aerial Vehicle

« UAVs, a.k.a., drones, have become quite common in our daily lives.
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Introduction: Computing Need

* To realize a UAV application, it is necessary to design and

implement multiple UAV functions.

UAV Applications
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Many advanced UAV
functions require
considerable computing
resources.

K. Ly, J. Xie, Y. Wan, S. Fu, “Towards UAV-Based Airborne Computing”, IEEE Wireless Communications Magazine, V%l. 26,

No. 6, pp. 172-179, 2019.



Introduction: Existing Solutions

* Many existing UAV platforms have limited computing
capability.

« Computation-intensive tasks are offloaded to the ground
station or the remote cloud.

Issues:

* May lead to significant
transmission delays or failures

« For high-bandwidth
applications, such a computing
model requires large

Ground communication bandwidths.




Introduction: Airborne Computing

 Benefit existing UAV applications by enhancing UAV functions
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Y. Gu, M. Zhou, S. Fu, and Y. Wan, “Airborne WiFi Networks through Directional Antennae: An Experimental Study”, in
Proceedings of 2015 IEEE Wireless Communications and Networking Conference, New Orleans, LA, March 2015. 6
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Introduction: Airborne Computing

* Benefit existing UAV applications by enhancing UAV functions

 Facilitate and enable new applications

computing
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* Du, Yao, Kezhi Wang, Kun Yang, and Guopeng Zhang. "Energy-efficient resource allocation in UAV based MEC system
for IoT devices." In 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1-6. IEEE, 2018.

* Li, Linpei, Xiangming Wen, Zhaoming Lu, and Wenpeng Jing. "An energy efficient design of computation offloading/
enabled by UAV." Sensors 20, no. 12 (2020): 3363.



Networked Airborne Computing (NAC)

Challenge:
« Computing capacity of a single UAV is limited.
mm) multiple UAVs compute collaboratively

Networked Airborne Computing:
* Computing in the aerial layer through the airborne network
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Technical Challenges

High 3-D mobility:
« Cause frequent network topology changes, link failures, data
losses and task interruptions

High-dimensional uncertainty:

* Modulate the dynamics of the UAVs
* Disturb the communication among the UAVs

Strict safety requirement:

« UAVs are required to respond in a timely manner and satisty
mechanical and aerodynamic constraints

Constrained designs employed by traditional mobile
computing systems are not sufficient any more.



Control and Networking Facilitated
Distributed Computing Framework

* Proactively exploits the mobility,
uncertainty, and networking to
enable high-performance designs

Uncertainty

* Mobility-aware coded distributed
computing

* Stochastic mobility control to
facilitate robust computing under
uncertainty Networking

» Networking design to facilitate
scalable computing

10



Coded Distributed Computing

Traditional distributed

computing:

* allocate non-overlapping tasks
to different computing nodes

sensitive to system
> o
oises, e.g., stragglers
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Coded distributed computing:

* Introduce redundancy into
computation through erasure
codes

resilient to failures &
- higher efficiency
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New Coded Distributed Computing Strategies

@ Encode and pre-store 4;

* Batch Processing based Coded BT Al@/’““
Computing for Static Networks %fl’@’ B ;ﬁfi‘

» Work for heterogeneous A, = G76y167s, @p\‘\i“\:\\\\\
computing nodes. @ vecode woobtaim 4z, e 1 ‘\Z*A:;:‘

* Partial results are returned
continuously, allowing quick

response.
* Resilient to node/link failures,

Number of rows

topology changes, slowdowns,

communication bottlenecks, and

other network changes.

* Experiment Results on Amazon EC2:
« Slow Nodes: BPCC achieves up to 79%, 78%, 62% improvements
compared to Uncoded, Load-Balanced, HCMM, respectively.
* Node failures: Uncoded, Load-Balanced fail all computation
runs; BPCC has higher success rate and smaller mean execution

time.
12



Mobility-Aware Coded Distributed Computing

NAC Formation Scenarios:
* Scenario One: formed by UAVs operated by different owners in an
opportunistic manner

* e.g., when cargo drones owned by different companies are serving the
same area.

* Mobility of the UAVs: uncontrollable, unknown, and can be considered

random.

* Scenario Two: formed by UAVs operated by the same owner
* e.g., in multi-UAV applications like multi-UAV surveillance, search and

rescue.

* Mobility of the UAVs: controllable, and can be proactively planned by the

owner to facilitate computing
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Wang, B., Xie, J., Lu, K., Wan, Y., & Fu, S. (2022). Learning and Batch-Processing Based Coded Computation with Mobility Awareness for Networked Airborne
Computing. IEEE Transactions on Vehicular Technology.

13




NAC with Random Mobility and Collision

Avoidance

* Limitations of the previous study:

(1) UAVs maintain a consistent movement pattern throughput the execution
of a particular task; (2) Motion interference between UAVs due to collision
avoidance is not considered; (3) Simple matrix multiplication tasks were

considered
* Mobility Model: Random . _ .
direction with collision avoidance TD3-based Task Offloading;:
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Beyond Matrix Multiplication

DARLIN: Distributed multi-Agent
Reinforcement Learning with One-hop
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Scalable and Efficient Uncertainty
Evaluation Method

« Problem formulation:

Uncertain Input Parameters
X

X1, X2, Xm |

Complex System

y=g(x1, %2, Xm)

Output

y
Black Box:

= M-PCM-OFFD

Selection of M-PCM points
based on the knowledge
of the three variables’
probability distributions

=  Monte Carlo simulation method

High Computational Cost !!
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M-PCM-OFFD Based Stochastic
Optimal Control

" Consider a generic dynamical system  ® Key Idea: Apply M-PCM-OFFED to

described by the following equation: discretize the uncertainty space
X[k + 1] = he(x, u, a) * Finite-horizon Control: Use
" The stochastic optimal control backward-in-time methods: e.g.,

problem is concerned with finding the ~ dynamic programming

op.tl.ma}l control policy ¥, that | = Apply M-PCM-OFFD to
minimizes a total expected cost J, i.e.,
approximate the value function
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forward-in-time methods: e.g.,

reinforcement learning

— Val date:
) = Eat{Bapee - R ) B i

T ik Vit (KD —.Eam[gk( 5 1) + V(s + ).

The control solution optimal to the samples selected by M PCM-OFFED is also
optimal to all possible values of uncertain parameters under simple assumptions.

= Infinite-horizon control



Networking Facilitates Computing

e * Motivation: Traditional distributed computing
limits resource sharing within one-hop

neighborhoods.

Computing

« Solution: Explore resources at distant UAVs
located multiple hops away.
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« Simulation results reveal that increasing the
QW utilization of resources leads to better computing

performance.
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NAC Simulator Design

e A ROS and Gazebo-based simulator

 Five core modules:
e UAYV hardware module, controller module, wireless communication
module, computing module and visualization model.
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NAC Hardware Testbed Design

Four core units:

* Quadcopter Unit: lifting and mobility
* Control Unit: mobility control of UAV

* Communication and Networking Unit: long-range
broadband communication

* Computing Unit: onboard processing and storage

))) e I

Platform API
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COMP | CTRL {COMM ———

| comp | Computing & o

Storage Antennas,

Wi-Fi, Sensors, etc.

Payload

CTRL | Control unit

COMM Communjcation &
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Fig. 1: System capability
This work is a collaboration between SDSU, UNT, UTA, and UPRM, supported by NSF CRI & CCRI programs.



Prototypes

* Quadcopter Unit: DJI Matrice 100/Tarot 650/DJI F550
* Control Unit: Pixhawk

¢ Communication and Networking Unit: Ubiquiti Nanostation Loco M5, Huawei
WS323/TP-Link TL-WR902AC

* Computing Unit: Jetson TX2/Raspberry Pi 4
* Localization Unit: GPS/Here3 RTK
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Flight Tests

 Application in forest fire detection
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Project website:

https://utari.uta.edu/research/airborne/

UTARY RESEARCH INSTITUTE

ABOUT RESEARCH

Documentation and ~ Test-bed Access and
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Other Resources
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NAC Applications

* Mobile/Multi-access Edge
Computing: UAVs function as edge
servers to provide computing
services to ground users.

* Real-time surveillance of multiple

targets o -
*  Multi-UAV coordinated navigation @
* Real-time 3D mapping 2 o

® charge nod
1500

* service node
A depot node
Il UAV 1

500 | WEE UAV 2
. UAV 3 5

0
0 500 1000 1500 2000 2500 3000 3500 4000
x[m]

2-D UAS images 3-D geographical model

Li, Linpei, Xiangming Wen, Zhaoming Lu, and Wenpeng Jing. "An energy efficient design of computation offloading enf.})led by
UAV." Sensors 20, no. 12 (2020): 3363.
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